Quantum Cryptography:
Quantum Key Distribution (QKD) protocols
Ludovic Noirie (Nokia Bell Labs)
LINCS reading group on "network theory" 2022/10/19
Outline
Qubits
Bell pairs
First protocol for QKD: BB84
QKD protocol using Bell's inequalities: E91
Today's and future QKD systems
References
Main Articles on quantum cryptography
$[$BB84$]$ Charles H. Bennett and Gilles Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the International Conference on Computers, Systems and Signal Processing, pp. 175-179, Bangalore, 1984, https://arxiv.org/abs/2003.06557, republished in Theoretical Computer Science, vol. 560, 2014, pp. 7–11, https://dx.doi.org/10.1016/j.tcs.2014.05.025.
$[$BB89$]$ Charles H. Bennett and Gilles Brassard, "The dawn of a new era for quantum cryptography: the experimental prototype is working!" ACM SIGACT News, Vol. 20, no. 4, pp 78–80, 1989, https://doi.org/10.1145/74074.74087.
$[$E91$]$ Artur K. Ekert, "Quantum cryptography based on Bell's theorem," Physical Review Letters, Vol. 67, no. 6, pp. 661-663, 1991, https://dx.doi.org/10.1103/PhysRevLett.67.661.
$[$BBE92$]$ Charles H. Bennett, Gilles Brassard and Artur K. Ekert, "Quantum Cryptography," Scientific American, vol. 267, no. 4, 1992, pp. 50–57, http://www.jstor.org/stable/24939253.
Articles on Bell pairs of entangled qubits/photons and Bell's inequality violation
$[$EPR1935$]$ The "EPR" paper (1935): "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?" by Einstein, Podolski and Rosen, https://doi.org/10.1103%2FPhysRev.47.777.
$[$Bell1964$]$ John Bell's original paper on his inequalities, "On the Einstein Podolsky Rosen paradox," Physics, Vol. 1, No. 3, pp. 195-200, 1964, https://journals.aps.org/ppf/pdf/10.1103/PhysicsPhysiqueFizika.1.195.
$[$CHSH1969$]$ John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories," Physical Review Letters, Vol. 23, no. 15, pp. 880-884, 1969, https://dx.doi.org/10.1103/PhysRevLett.23.880.
$[$Asp1976$]$ Alain Aspect, "Proposed experiment to test the nonseparability of quantum mechanics," Physical Review D, Vol. 14, no. 8, pp. 1944-1951, 1976, https://link.aps.org/doi/10.1103/PhysRevD.14.1944.
$[$AGR1981$]$ Alain Aspect, Philippe Grangier and Gérard Roger, "Experimental Tests of Realistic Local Theories via Bell's Theorem," Physical Review Letters, Vol. 47, no. 7, pp. 460-463, 1981, https://dx.doi.org/10.1103/PhysRevLett.47.460.
$[$AGR1982$]$ Alain Aspect, Philippe Grangier and Gérard Roger, "Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities," Physical Review Letters, Vol. 49, no. 2, pp. 91-94, 1982, https://dx.doi.org/10.1103/PhysRevLett.49.91.
$[$ADR1982$]$ Alain Aspect, Jean Dalibard and Gérard Roger, "Experimental Test of Bell Inequalities Using Time-Varying Analyzers," Physical Review Letters Vol. 49, no. 25, pp. 1804-1807; 1982, https://dx.doi.org/10.1103/PhysRevLett.49.1804.
$[$Nobel2022$]$ The Nobel Prize in Physics 2022, NobelPrize.org, Nobel Prize Outreach AB 2022, Tue. 11 Oct 2022, https://www.nobelprize.org/prizes/physics/2022/summary/.
Other articles on quantum physics
$[$Woo1981$]$ William K. Wootters, "Statistical Distance and Hilbert Space," Physical Review D, Vol. 23, no. 2, pp. 357-362, 1981, https://link.aps.org/doi/10.1103/PhysRevD.23.357.
$[$WZ1982$]$ William K. Wootters and Zurek Wojciech, "A Single Quantum Cannot be Cloned," Nature, Vol. 299, pp. 802-803, 1982. https://dx.doi.org/10.1038/299802a0.
$[$BBC+1993$]$ Charles Bennet, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres and William K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Physical Review Letters, Vol. 70, no. 13, pp. 1895-1899, 1993, https://dx.doi.org/10.1103/PhysRevLett.70.1895.
$[$Rov1996$]$ Carlo Rovelli, "Relational quantum mechanics," International Journal of Theoretical Physics, Vol. 35, pp. 1637–1678, 1996, https://doi.org/10.1007/BF02302261, https://arxiv.org/abs/quant-ph/9609002.
$[$Rov2021$]$ Carlo Rovelli, "The Relational Interpretation of Quantum Physics," to appear in the "Oxford Handbook of the History of Interpretation of Quantum Physics," https://arxiv.org/abs/2109.09170.
Wikipedia pages
https://en.wikipedia.org/wiki/Quantum_mechanics#Mathematical_formulation
https://en.wikipedia.org/wiki/Qubit
https://en.wikipedia.org/wiki/Bloch_sphere
https://en.wikipedia.org/wiki/Bell_state
https://en.wikipedia.org/wiki/Quantum_key_distribution
https://en.wikipedia.org/wiki/BB84
https://en.wikipedia.org/wiki/No-cloning_theorem
https://en.wikipedia.org/wiki/EPR_paradox
https://en.wikipedia.org/wiki/Bell's_theorem
https://en.wikipedia.org/wiki/Aspect%27s_experiment
https://en.wikipedia.org/wiki/Wigner%27s_theorem
https://en.wikipedia.org/wiki/Relational_quantum_mechanics
LINCS talks on related topics:
Other videos:
Some videos on "ScienceEtonnante" YouTube channel & "Science Étonnante" website (in French):
Qubits as $\frac{1}{2}$-spin particles and the Bloch sphere
Qubits as polarized photons and the Poincaré sphere
Measurement of a non-entangled qubit
Time evolution of a non-entangled qubit
Modifying and measuring photonic qubits in practice
$\frac{1}{2}$-spin can be viewed as an intrinsic angular momentum (angular momentum = rotation speed of a spinning object) in some oriented axis in our 3D space with the constant value $\frac{\hslash}{2}$.
For a given axis, spin value $-\frac{\hslash}{2}$ in a given orientation is equivalent to $+\frac{\hslash}{2}$ in the opposite orientation.
The qubit (pure) state can be represented by a vector $\vec{s} = \sin\left(\theta\right) \cos\left(\varphi\right) \cdot \vec{x} + \sin\left(\theta\right) \sin\left(\varphi\right) \cdot \vec{y} + \cos\left(\theta\right) \cdot \vec{z}$ on the unit sphere in 3D, which is called the Bloch sphere.
The orthogonal state (= opposite orientation state for qubit) $\left|s^\bot\right\rangle$ in the Hilbert space $\mathbb{C}^2$, for which $\left\langle \left. s^\bot \right| s\right\rangle=0$, i.e., $\left|s^\bot\right\rangle \perp \left|s\right\rangle$, is represented by the opposite vector $\vec{s}^\bot = -\vec{s}$ in the Bloch sphere.
Convention: for any orientation $\vec{s}$, bit value 0 corresponds to $+\frac{\hslash}{2}$, 1 corresponds to $-\frac{\hslash}{2}$.
1-to-1 correspondence with unitary vectors of Hilbert space $\mathbb{C}^2$ in quantum physics:
$\left|s\right\rangle = \left(e^{i\eta}\right) \cdot \left( \cos\left(\theta/2\right) \cdot \left|0\right\rangle + \sin\left(\theta/2\right) e^{i\varphi} \cdot \left|1\right\rangle \right)$,
where $e^{i\eta}$ is the arbitrary phase factor.
Arbitrary phase factor and normalization to 1 $\Rightarrow$ Qubit quantum states of qubits are rays in the Hilbert space $\mathbb{C}^2$, i.e., elements of the projective space $\mathrm{P}\mathbb{C}^2 = {\mathbb{C}^2}/_{\mathbb{C}\setminus\left\{0\right\}}$.
The projective space $\mathrm{P}\mathbb{C}^2$ equipped with its angular distance $\theta'$ in the complex vector space $\mathbb{C}^2$ multiplied by 2 is isometric to the Bloch sphere equiped with the angular distance $\theta$ in the real vector space $\mathbb{R}^3$: we have $\theta = 2 \theta'$.
Photons are 1-spin particles and should have 3 possible spin outcome states when measured on a given axis: $+\hslash$, $0$ or $-\hslash$, i.e., $-1$, $0$ or $1$.
Because of relativistic effect at light speed $c$, spin $0$ is forbidden.
$\Rightarrow$ Photons are qubits that behave like $\frac{1}{2}$-spin particles, but with $\pm \hslash$ spin instead of $\pm \frac{\hslash}{2}$.
More generally, a qubit is any quantum system which, after any measurement, can have only two possible outcome states, these outcome states depending of the measurement.
Physically, the spin of the photon is its polarization: $\left| 0 \right\rangle$ or $+1$ for left-circular polarization, $\left| 1 \right\rangle$ or $-1$ for righ-circular polarization, and a complex linear combination of both for elliptic or linear polarization.
With $\vec{z}$ being the propagation axis of the photon, the Bloch sphere representation of the qubit exactly corresponds to the Poincaré sphere representation of the polarization, where the polarizations $\uparrow$, $\rightarrow$, $\nwarrow$, $\nearrow$, $\circlearrowleft$ and $\circlearrowright$ corresponds respectively to the qubit states $\left| + \right\rangle = \left| \circlearrowleft \right\rangle$, $\left| - \right\rangle = \left| \circlearrowright \right\rangle$, $\left| +i \right\rangle = \left| \rightarrow \right\rangle$, $\left| -i \right\rangle = \left| \leftarrow \right\rangle$, $\left| 0 \right\rangle = \left| \uparrow \right\rangle$ and $\left| 1 \right\rangle = \left| \downarrow \right\rangle$, and to the Bloch vectors $\vec{x}$, $-\vec{x}$, $\vec{y}$, $-\vec{y}$, $\vec{z}$ and $-\vec{z}$.
We consider a measurement according to the oriented axis $\vec{m}$ (i.e., $\left| \psi_{m} \right\rangle \in \mathbb{C}^2$) on the qubit in the known initial state $\vec{s}$ (i.e., $\left| \psi_{s} \right\rangle \in \mathbb{C}^2$), the measured outcome is $\vec{m}$ with probability $\mathrm{proba}\left[\vec{m}|\vec{s}\right]$ or $-\vec{m}$ with probability $\mathrm{proba}\left[-\vec{m}|\vec{s}\right]$ where:
With the convention: bit value 0 corresponds to $+\frac{\hslash}{2}$ (spin $\vec{m}$), bit value 1 corresponds to $-\frac{\hslash}{2}$ (spin $-\vec{m}$), like $z$ axis.
Because $\mathrm{proba}\left[\vec{m}| \vec{s} \right] = \frac{\left\langle \psi_{m} | \psi_{s} \right\rangle \left\langle \psi_{s} | \psi_{m} \right\rangle} {\left\langle \psi_{m} | \psi_{m} \right\rangle \left\langle \psi_{s} | \psi_{s} \right\rangle} = \cos^2\theta_{Hilbert}\left(\psi_{m},\psi_{s}\right) = \frac{1}{2}+\frac{1}{2}\cos 2\theta_{Hilbert}\left(\psi_{m},\psi_{s}\right) = \frac{1}{2}+\frac{1}{2}\cos\theta_{Bloch Sphere}\left(\vec{m},\vec{s}\right)$.
Initial qubit state: $\vec{s}$ (i.e., $\left| \psi_{s} \right\rangle \in \mathbb{C}^2$). The order of measurement matters,the outcomes being different:
(1) First measurement according to the oriented axis $\vec{m}_1$ then second measurement according to the oriented axis $\vec{m}_2$:
Measure outcome after the first measurement: $\vec{m}_1$ with probability $p_1 = \frac{1 + \vec{m}_1\cdot\vec{s}}{2}$ or $-\vec{m}_1$ with probability $1-p_1 = \frac{1 - \vec{m}_1\cdot\vec{s}}{2}$.
Measure outcome after the second measurement: $\vec{m}_2$ with probability $p_2 = p_1 \times \frac{1 + \vec{m}_2\cdot\vec{m}_1}{2} + \left(1-p_1\right) \times \frac{1 - \vec{m}_2\cdot\vec{m_1}}{2} = \frac{1 + \vec{m}_1\cdot\vec{s} \times \vec{m}_2\cdot\vec{m}_1}{2}$ or $-\vec{m}_2$ with probability $1-p_2= \frac{1 - \vec{m}_1\cdot\vec{s} \times \vec{m}_2\cdot\vec{m}_1}{2}$.
(2) First measurement according to the oriented axis $\vec{m}_2$ then second measurement according to the oriented axis $\vec{m}_1$:
Measure outcome after the first measurement: $\vec{m}_2$ with probability $p'_1 = \frac{1 + \vec{m}_2\cdot\vec{s}}{2}$ or $-\vec{m}_2$ with probability $1-p_2 = \frac{1 - \vec{m}_2\cdot\vec{s}}{2}$.
Measure outcome after the second measurement: $\vec{m}_1$ with probability $p'_2 = p'_1 \times \frac{1 + \vec{m}_1\cdot\vec{m}_2}{2} + \left(1-p'_1\right) \times \frac{1 - \vec{m}_1\cdot\vec{m}_2}{2} = \frac{1 + \vec{m}_2\cdot\vec{s} \times \vec{m}_1\cdot\vec{m}_2}{2}$ or $-\vec{m}_1$ with probability $1-p_2= \frac{1 - \vec{m}_2\cdot\vec{s} \times \vec{m}_1\cdot\vec{m}_2}{2}$.
Entropy considerations with (1):
$p_1 = \frac{1 + \vec{m}_1\cdot\vec{s}}{2}$, $p_2 = \frac{1 + \vec{m}_1\cdot\vec{s} \times \vec{m}_2\cdot\vec{m}_1}{2}$.
$1.$ If $0<\left|\vec{m}_1\cdot\vec{s}\right|<1$ and $0<\left|\vec{m}_2\cdot\vec{m}_1\right|<1$ then $\left| p_2 - \frac{1}{2}\right|<\left| p_1 - \frac{1}{2}\right|$: the entropy strictly increases.
$2.$ If $\left|\vec{m}_2\cdot\vec{m}_1\right|=1$, i.e., $\vec{m}_2 = \pm \vec{m}_1$, then $p_2 \in \left\{p_1,1-p_1\right\}$, the state (and the entropy) does not change with the second measurment.
$3.$ If $\vec{m}_1\cdot\vec{s} = 0$ then $p_2 = p_1 = \frac{1}{2}$: the initial knowledge is completely lost after the first measurement, 1 bit of information is renewed.
In quantum phisics, the evolution of the quantum state is governed by the Shrödinger equation: $i \hslash \frac{d}{dt} \left|\varphi\left(t\right)\right\rangle = H \left|\varphi\left(t\right)\right\rangle$ where $H$ is the Halmitonian operator (energy observable).
If $H$ does not depend on time $t$, the solution of this equation is $\left|\varphi\left(t\right)\right\rangle = U\left(t\right) \left|\varphi\left(0\right)\right\rangle$ where $U\left(t\right) = e^{- i H t / \hslash}$ is a unitary operator (because $H$ is hermitian).
If $H$ depends on time $t$, we still have $\left|\varphi\left(t\right)\right\rangle = U\left(t\right) \left|\varphi\left(0\right)\right\rangle$ where $U\left(t\right)$ is a unitary operator depending on time $t$ in a more complex way.
For qubits, unitary operators in $\mathbb{C}^2$ correspond to rotations in $\mathbb{R}^3$ (i.e., isometries that conserve the orientations of 3D bases). Thus the evolution of the qubit states in the Bloch sphere is given by a rotation: $\vec{s}\left(t\right) = rot_{\vec{\Delta}(t),\alpha(t)}\left(\vec{s}\left(0\right)\right)$.
The evolution is deterministic, i.e., there is no change in the amount of information an observer has on the observed system.
Modifying (= quantum processing) a single photonic qubit = rotating its quantum state = modifying the polarization of a photon.
This can be done using waveplates, see https://en.wikipedia.org/wiki/Waveplate:
By combining two wave plates with adequates dephasing and adequate axis positioning, any rotation $rot_{\vec{\Delta},\alpha}$ can be reached.
It can also be reached using 3 waveplates for which one can adequately position the axes: a quater-wave plate (any elliptical polarization $\rightarrow$ some linear polarization) + a half-wave plate (rotates the linear polarization with the desired long axis) + a quater-wave plate (transform it into the desired elliptical polarization). See https://en.wikipedia.org/wiki/Polarization_controller.
This corresponds to the "Mickey mouse ears" in optical fiber testbeds: 1 fiber loop with the right diameter is a quater-wave plate, with two loops we have a half-wave plate.
Use of a beam-splitting polarizer + two photo-detectors (photodiodes):
This was used in Aspect's experiments in 1982, in a manual $[$AGR1982$]$ and automatically-varying $[$ADR1982$]$ configurations.
Bell pair of maximally-entangled qubits
Measurement of a Bell pair
Usual Bell pairs represented with Bloch spheres
Equivalence of Bell pairs
Bell pairs in practice
A generic Bell pair $BP$ is a maximally entangled pair of qubits $\left(A,B\right)$.
Maximal entanglement = maximal correlation between the qubits = 1 bit of correlation information, because the qubits interacted "totally" between themselves.
Because of this "total" interaction between the qubits, the previous information about the individual qubits is lost. Thus, an observer has no information neither on qubit $A$ nor on qubit $B$ (1 bit entropy for each).
But the observer has 1 bit of correlation information. Thus, if this observer measures the qubit $A$ (respectively the qubit $B$), then this observer infers the state of the qubit $B$ (respectively the qubit $A$).
If the qubit $A$ is measured according to the oriented axis $\vec{m}_A$, 1 additional bit of information is acquired: the measured outcome of qubit $A$ is $\vec{m}_A$ with probability $\frac{1}{2}$ or $-\vec{m}_A$ with probability $\frac{1}{2}$ (whatever the value of $\vec{m}_A$).
Because of the 1 bit of correlation information, if $\pm \vec{m}_A$ is measured, the inferred qubit state is $f\left(\pm \vec{m}_A\right)$.
Some information-based considerations imposes that $f$ is an isometry in 3D space: conservation of the angles, the angular distance being a measure of the distinguisghability between states, see Wootters' statistical distance $[$Woo1991$]$ (two states measured on A or B cannot be more or less easily distinguised on respectively B or A, which imposes the same angles).
There are two kinds of isometries in 3D spaces, related to unitary and antiunitary operators (Wigner's therorem $[$see https://en.wikipedia.org/wiki/Wigner%27s_theorem on Wikipedia$]$ applied to $\mathbb{C}^2$):
Quantum physics $\Rightarrow$ $f = ir^A_{\vec{\Delta},\alpha}$ (it can be any improper rotation, represented by an antiunitary operator).
If the qubit $A$ is measured according to the oriented axis $\vec{m}_A$, the measured outcome of qubit $A$ is $\pm \vec{m}_A$ with probability $\frac{1}{2}$ for each possible outcome, and the inferred qubit $B$ state is $\pm \vec{m}_B = ir^A_{\vec{\Delta},\alpha} \left( \pm \vec{m}_A \right) = \pm ir^A_{\vec{\Delta},\alpha} \left( \vec{m}_A \right)$.
If, instead, the qubit $B$ is measured according to the oriented axis $\vec{m}_B$, the measured outcome of qubit $B$ is $\pm \vec{m}_B$ with probability $\frac{1}{2}$ for each possible outcome, and the infered qubit $A$ state is $\pm \vec{m}_A = ir^B_{\vec{\Delta},-\alpha} \left( \pm \vec{m}_B \right) = \pm ir^B_{\vec{\Delta},-\alpha} \left( \vec{m}_B \right)$.
Thus, the Bell Pair $BP_{\vec{\Delta},\alpha}$ is characterized by the improper rotation $ir^A_{\vec{\Delta},\alpha} = ref_{\Delta^\bot} \circ rot_{\vec{\Delta},\alpha} = rot_{\vec{\Delta},\alpha} \circ ref_{\Delta^\bot}$.
The Bell pair state in the Hilbert space $\mathbb{C}^2 \otimes \mathbb{C}^2 = \mathbb{C}^4$ is $\left|{BP_{\vec{\Delta},\alpha}} \right\rangle = \frac{1}{\sqrt{2}}\left( \left|s\right\rangle \otimes AU\left|s\right\rangle + \left|s^\bot\right\rangle \otimes AU\left|s^\bot\right\rangle \right)$ for all qubit states $s$, where $AU$ is the antiunitary operator corresponding to $ir^A_{\vec{\Delta},\alpha}$.
We consider the Bell pair $BP_{\vec{\Delta},\alpha}$ of maximally entangled pair of qubits $\left(A,B\right)$, characterized by $ir^A_{\vec{\Delta},\alpha}$.
The measurement on qubit $A$ with axis $\vec{m}_A$ then on qubit $B$ with axis $\vec{m}_B$ gives:
The measurement on qubit $B$ with axis $\vec{m}_B$ then on qubit $A$ with axis $\vec{m}_A$ gives:
Commutation of the two measurements
(1) The outcome after the first measurement depends on the order of measurement of the two qubits except if $\vec{m}_B = \pm ir^A_{\vec{\Delta},\alpha}\left(\vec{m}_A\right)$.
This is in favor of a relational interpretation of quantum physics $[$Rov1996, Rov2021$]$ thats says that the information an observer has on a system (= quantum state) depends on the observer (a kind of generalization of the special or general relativity).
(2) The outcome after the two measurement does not depend on the order of these measurements of the two qubits (they commute):
$\sigma' = \vec{m}_A \cdot ir^B_{\vec{\Delta},-\alpha}\left(\vec{m}_B\right) = ir^A_{\vec{\Delta},\alpha}\left(\vec{m}_A\right) \cdot ir^A_{\vec{\Delta},\alpha}\left(ir^B_{\vec{\Delta},-\alpha}\left(\vec{m}_B\right)\right) = ir^A_{\vec{\Delta},\alpha}\left(\vec{m}_A\right) \cdot Id\left(\vec{m}_B\right) = \vec{m}_B \cdot ir^A_{\vec{\Delta},\alpha}\left(\vec{m}_A\right) = \sigma$,
because $ir^A_{\vec{\Delta},\alpha}$ conserves the scalar product since it is an isometry and $ir^A_{\vec{\Delta},\alpha} \circ ir^B_{\vec{\Delta},-\alpha} = Id$.
This commutation is due to the fact that the two measurements take place in different locations (locality of interactions).
$1$. Bell pair $BP_{\vec{y},0} = xz$-plane reflection $ir^A_{\vec{y},0} = \left|\Phi^+\right\rangle = \frac{1}{\sqrt{2}}\left( \left|0\right\rangle \otimes \left|0\right\rangle + \left|1\right\rangle \otimes \left|1\right\rangle \right)$
$2$. Bell pair $BP_{\vec{x},0} = yz$-plane reflection $ir^A_{\vec{x},0} = \left|\Phi^-\right\rangle = \frac{1}{\sqrt{2}}\left( \left|0\right\rangle \otimes \left|0\right\rangle - \left|1\right\rangle \otimes \left|1\right\rangle \right)$
$3$. Bell pair $BP_{\vec{z},0} = xy$-plane (linear-polarization plane) reflection $ir^A_{\vec{z},0} = \left|\Psi^+\right\rangle =\frac{1}{\sqrt{2}}\left( \left|0\right\rangle \otimes \left|1\right\rangle + \left|1\right\rangle \otimes \left|0\right\rangle \right)$
$4$. Bell pair $BP_{\vec{s},\pi} =$ point reflection $ir^A_{\vec{s},\pi} = \left|\Psi^-\right\rangle = \frac{1}{\sqrt{2}}\left( \left|0\right\rangle \otimes \left|1\right\rangle - \left|1\right\rangle \otimes \left|0\right\rangle \right)$
The Bell Pair $BP_{\vec{\Delta},\alpha}$ is characterized by $ir^A_{\vec{\Delta},\alpha} = ref_{\Delta^\bot} \circ rot_{\vec{\Delta},\alpha} = rot_{\vec{\Delta},\alpha} \circ ref_{\Delta^\bot}$.
The Bell Pair $BP_{\vec{\Delta'},\alpha'}$ is characterized by $ir^A_{\vec{\Delta'},\alpha'} = ref_{\Delta'^\bot} \circ rot_{\vec{\Delta'},\alpha'} = rot_{\vec{\Delta'},\alpha} \circ ref_{\Delta'^\bot}$.
Any improper rotation can be obtain from one given improper rotation combined with the rotation of one of the qubit: $ir^A_{\vec{\Delta'},\alpha'} = rot^A_{\vec{\Delta''},\alpha''} \circ ir^A_{\vec{\Delta},\alpha}$ with $rot^A_{\vec{\Delta''},\alpha''} = ir^A_{\vec{\Delta'},\alpha'} \circ ir^A_{\vec{\Delta},-\alpha}$, because the composition of two improper rotations is a rotation.
For exemple, using $rot_{\vec{x},\pi} = ir_{\vec{x},0} \circ ir_{\vec{y},0} = ref_{yz,0} \circ ref_{xz,0} = ref_{xz,0} \circ ref_{yz,0}$ on one of the qubits $A$ or $B$, which is realized with a half-wave plate aligned with the vertical or horizontal polarization axes for polarized photons, $BP_{\vec{y},0}$ is transformed into $BP_{\vec{z},0}$ and $BP_{\vec{z},0}$ is transformed into $BP_{\vec{y},0}$.
A Bell pair of maximally-entangled photons can be created for example with Calcium atoms:
Note: If one wants another Bell pair, one just needs to rotate one of the two qubits i.e., change the polarization of one of the two photons.
This was used in Aspect's experiments in 1981-1982 $[$AGR1981$]$.
For example, one can use the Bell pair $BP_{\vec{z},0} = xy$-plane ($=$ linear-polarization plane) reflection $ir^A_{\vec{z},0} = \left|\Psi^+\right\rangle =\frac{1}{\sqrt{2}}\left( \left|0\right\rangle \otimes \left|1\right\rangle + \left|1\right\rangle \otimes \left|0\right\rangle \right)$.
$1.$ If the polarizations of the two photons are measured with the same linear vertical polarization axes $(\uparrow,\uparrow)$, then the measured polarization are $(\uparrow,\uparrow)$, i.e., $(0,0)$, or $(\rightarrow,\rightarrow)$, i.e., $(1,1)$, with $50$% probability each;
$2.$ If the polarizations of the two photons are measured with the same linear diagonal polarization axes $(\nearrow,\nearrow)$, then the measured polarization are $(\nearrow,\nearrow)$, i.e., $(0,0)$, or $(\nwarrow,\nwarrow)$, i.e., $(1,1)$, with $50$% probability each;
$3.$ If the polarizations of the two photons are measured with the different polarization axes $(\uparrow,\nearrow)$, then the measured polarization are $(\uparrow,\nearrow)$, i.e., $(0,0)$, $(\uparrow,\nwarrow)$, i.e., $(0,1)$, $(\rightarrow,\nearrow)$, i.e., $(1,0)$, or $(\rightarrow,\nwarrow)$, i.e., $(1,1)$, with $25$% probability each;
$4.$ If the polarizations of the two photons are measured with the different polarization axes $(\nearrow,\uparrow)$, then the measured polarization are $(\nearrow, \uparrow)$, i.e., $(0,0)$, $(\nearrow,\rightarrow)$, i.e., $(0,1)$, $(\nwarrow,\uparrow)$, i.e., $(1,0)$, or $(\nwarrow,\rightarrow)$, i.e., $(1,1)$, with $25$% probability each.
Case 1 and 2: Using the same polarization axis for the measurements of the two maximally-entangled photons leads to the creation of a shared random secret bit between the two measurement sides (same quantum state for both observers of qubits A and B).
This is essentially how QKD works.
Case 3 and 4: Using différent polarization axes for the measurements of the two maximally-entangled photons leads to different quantum states for the observers of qubits A and B before they exchange their information.
For example, in case 3 of measurements with the different polarization axes $(\uparrow,\nearrow)$:
$1.$ The observer of qubit A gets $\uparrow \otimes \uparrow$ with probability $50$%,
$2.$ While the observer of qubit B gets $\nearrow \otimes \nearrow$ with probability $50$%,
$3.$ Which leads to $\uparrow \otimes \nearrow$ with probability $25$% after they exchange the results of their measurements.
This is in favor of a relational interpretation of quantum physics $[$Rov1996, Rov2021$]$ thats says that the information an observer has on a system (= quantum state) depends on the observer (a kind of generalization of the special or general relativity).
Protocol described in $[$BB84$]$.
BB84 protocol without eavesdropping
BB84 protocol with eavesdropping
Experimental setup for BB84
We choose the Bell pair $BP_{\vec{z},0} \sim xy$-plane (linear-polarization plane) reflection $ir^A_{\vec{z},0} = ref_{xy} \sim \left|\Psi^+\right\rangle = \frac{1}{\sqrt{2}}\left( \left|0\right\rangle \otimes \left|1\right\rangle + \left|1\right\rangle \otimes \left|0\right\rangle \right)$.
Alice chooses the two orthogonal measurement axes $\vec{x} \perp \vec{y}$ corresponding to polarization axes $\uparrow$ and $\nearrow$ (there could be other choices...).
The induced choice of orthogonal measurement axes by Bob is $ir^A_{\vec{z},0}\left(\vec{x}\right) = \vec{x}$ $\perp$ $ir^A_{\vec{z},0}\left(\vec{y}\right) = \vec{y}$: same choices of polarization axes.
(1) Alice receives the qubit $A$ of the Bell pair $BP_{\vec{y},0}$ and Bob the qubit $B$ (quantum channel).
(2) Alice and Bob choose independently and randomly their axes of measurement $\vec{m}_A$ and $\vec{m}_B$ in $\left\{ \vec{x}, \vec{y} \right\}$, which correspond to $\uparrow$ and $\nearrow$ polarizations, and they process to the measurement of the qubit they have.
(3) Identifying $\vec{m}_A$ and $\vec{m}_B$ outcome states with binary value $0$ and $-\vec{m}_A$ and $-\vec{m}_B$ with binary value $1$, the measured bits are:
$\ \ \ \ \bullet \ $ If $\vec{m}_A = \vec{m}_B$, $\left( 0 , 0 \right)$ or $\left( 1 , 1 \right)$ with probability $\frac{1}{2}$for both possibilities;
$\ \ \ \ \bullet \ $ If $\vec{m}_A \neq \vec{m}_B$, $\left( 0 , 0 \right)$, $\left( 0 , 1 \right)$, $\left( 1 , 0 \right)$ or $\left( 1 , 1 \right)$ with probability $\frac{1}{4}$ for each possibility.
(4) They communicate their choice of axes (through an authenticated classical channel which may be not encrypted) and they consider the random shared secret bit they measured only when $\vec{m}_A = \vec{m}_B$.
Repeating this process $2K$ times in parallel (step 4 should be done after all the qubits have been measured in step 2), Alice and Bob can build a shared secret random key of average size $K$.
The qubits are indexed by $i \in I = \left\{1, \cdots, n_I\right\}$.
The choices for measurement axes by Alice ($X = A$) and Bob ($X = B$) are for Bell pair $i$, with our example, $m^X_i = 0$ for $\vec{x}$ (polarization axis $\uparrow$) and $m^X_i = 1$ for $\vec{y}$ (polarization axis $\nearrow$) .
The measurement results by Alice ($X = A$) and Bob ($X = B$) on their qubit of the Bell pair $i$, depending on the measurement axes, are $b^X_i = 0$ for $+\vec{x}$ ($\uparrow$ polarization) or $+\vec{y}$ ($\nearrow$ polarization), and $b^X_i = 1$ for $-\vec{x}$ ($\rightarrow$ polarization) or $-\vec{y}$ ($\nwarrow$ polarization).
The full set of data for the BB84 protocol is then $\left( \left(m^A_i,b^A_i\right) , \left(m^B_i,b^B_i\right) \right)_{i \in I}$.
The index set of Bell pairs for which Alice and Bob chose the same axes is $J = \left\{ i \in I \ |\ m^A_i = m^B_i \right\}$.
The quantum physics laws impose $\forall i \in J, b^A_i = b^B_i$.
Summary of BB4 protocol without evesdropping
The eavesdropper Eve can have almost full power on the communications between Alice and Bob:
Alice and Bob process the following additional steps to detect eavesdropping:
(5) Once Alice and Bob have measured all the qubits they received (step 2 of BB84) and have communicated their choice of axes for all of them (step 4 of BB84), they randomly select some of them and they communicates the corresponding measured bits (this is not done in BB84 for the qubits used to build the shared secret random key).
(6) If Eve (eavesdropper) has modify some qubits by some measurements, then, when $\vec{m}_A = \vec{m}_B$, the probability that the corresponding bits measured by Alice and Bob are different is greater or equal to $\frac{1}{4}$, while it would be $0$ without Eve intervention. This allows Alice and Bob to statistically evaluate the number of eavesdropped qubits.
(7) Alice and Bob process the step 4 of BB84 for the remaining qubits, and perform a purification process $[$BBE92$]$ to build a shared secret random key taking into account the estimated proportion of qubits that are eavesdropped.
In the following we prove this for the case when Eve measured the qubit $B$ before Bob.
It is also true for the cases when Eve measured the qubit $A$ before Alice of both qubits $A$ and $B$ before Alice and Bob.
The security proof relies on the following facts:
BB4 protocol with evesdropping with the following Eve's strategy:
Alice and Bob expect that the condition $m_A = m_B \Rightarrow b_A = b_B$ holds. Thus Eve is detected when $m_A = m_B$ and $b_A \neq b_B$ (orange boxes). The detection probability when $m_A = m_B$ is then $p_{detect} = \frac{1}{4}$.
Similar results with $\vec{m}_E = \vec{y}$. These cases correspond to the worst cases: $p_{detect} \geq \frac{1}{4}$ in all cases (see proof).
Proof (1/3)
Eve intercept the qubit $B$ and measures it according to the oriented axis $\vec{m}_E$ which may or may not be in $\left\{\vec{x}, \vec{y}\right\}$. The measured outcome is $\pm\vec{m}_E$ with probability $\frac{1}{2}$.
Because she knows that the Bell pair is $BP_{\vec{z},0}$, her inferred qubit $A$ state is then $ir^B_{\vec{z},0}\left(\pm\vec{m}_E\right) = \pm ir^B_{\vec{z},0}\left(\vec{m}_E\right)$.
Alice measures qubit $A$ with axis $\vec{m}_A \in\left\{\vec{x}, \vec{y}\right\}$. $\vec{m}_A$ is unknown by Eve. The combined Eve + Alice measured outcome is then, with $\sigma_E = \vec{m}_A \cdot ir^B_{\vec{y},0}\left(\vec{m}_E\right)$, $\left( \vec{m}_A, \vec{m}_E \right)$ with probability $\frac{1 + \sigma_E}{4}$, $\left( \vec{m}_A, -\vec{m}_E \right)$ with probability $\frac{1 - \sigma_E}{4}$, $\left( -\vec{m}_A, \vec{m}_E \right)$ with probability $\frac{1 - \sigma_E}{4}$ or $\left( -\vec{m}_A, -\vec{m}_E \right)$ with probability $\frac{1 + \sigma_E}{4}$.
Alice sends to Bob a new qubit $E$ which may depends on what she measured and which can be a mixed state (statistical quantum mechanisms with density operator formalism): $\vec{s}\left(\pm\vec{m}_E\right)$ with probability $p\left(\pm\vec{m}_E\right)$, and $-\vec{s}\left(\pm\vec{m}_E\right)$ with probability $1-p\left(\pm\vec{m}_E\right)$.
She may choose to send the qubit $E = B$ that she measured: $p\left(\pm\vec{m}_E\right)=1$ and $s\left(\pm\vec{m}_E\right)=\pm\vec{m}_E$; but she can do other things, including sending a qubit $E$ fully or partially entangled with another quantum system (some aparatus she may use) including the qubit $B$ she measured.
Bob measured with axis $\vec{m}_B \in\left\{\vec{x}, \vec{y}\right\}$ the qubit $E$ coming from the interception by Alice of the qubit $B$. His measured outcome is $\vec{m}_B$ with probability $\frac{1 + \sigma_B}{2}$ or $-\vec{m}_B$ with probability $\frac{1 - \sigma_B}{2}$ where $\sigma_B\left(\pm\vec{m}_E\right) = \left(2p\left(\pm\vec{m}_E\right)-1\right) \vec{m}_B\cdot\vec{s}\left(\pm\vec{m}_E\right)$, but Bob does not know $\sigma_B$ nor $\pm\vec{m}_E$.
Proof (2/3)
In the remaining parts of the proof, we will prove that, when $\vec{m}_A = \vec{m}_B$, the probability $p_{detect}$ that Alice and Bob detect that someone made a measurement on the qubit $B$ is lower bounded by $p_{detect} \geq \frac{1}{4}$, this lower bound being reached, for example, if $\vec{m}_E \in \left\{\vec{x}, \vec{y}\right\}$, $p\left(\pm\vec{m}_E\right)=1$ and $s\left(\pm\vec{m}_E\right)=\pm\vec{m}_E$.
The combined Eve + Alice measured outcome is, with $\sigma_E = \vec{m}_A \cdot ir^B_{\vec{y},0}\left(\vec{m}_E\right)$: $\left( \vec{m}_A, \vec{m}_E \right)$ with probability $\frac{1 + \sigma_E}{4}$, $\left( \vec{m}_A, -\vec{m}_E \right)$ with probability $\frac{1 - \sigma_E}{4}$, $\left( -\vec{m}_A, \vec{m}_E \right)$ with probability $\frac{1 - \sigma_E}{4}$ or $\left( -\vec{m}_A, -\vec{m}_E \right)$ with probability $\frac{1 + \sigma_E}{4}$.
When $\vec{m}_A = \vec{m}_B$, we have $\sigma_B\left(\pm\vec{m}_E\right) = \left(2p\left(\pm\vec{m}_E\right)-1\right) \vec{m}_A\cdot\vec{s}\left(\pm\vec{m}_E\right)$ and his measured outcome is $\vec{m}_A$ with probability $\frac{1 + \sigma_B\left(\pm\vec{m}_E\right)}{2}$ or $-\vec{m}_A$ with probability $\frac{1 - \sigma_B\left(\pm\vec{m}_E\right)}{2}$. This measured outcome is independant of the combined Eve + Alice measured outcome, because Bob's measurement comes after Eve's measurement.
Alice and Bob can detect the eavesdropping when Bob measures $\pm \vec{m}_A$ while Alice measures the opposite $\mp \vec{m}_A$. So we can compute the probability $p_{detect}\left(\vec{m}_A\right)$ as a function of $\vec{m}_A$, which is unknown by Eve.
$p_{detect}\left(\vec{m}_A\right)$ $=$ $\frac{1 + \sigma_B\left(+\vec{m}_E\right)}{2} \times \frac{1 - \sigma_E}{4} + \frac{1 + \sigma_B\left(-\vec{m}_E\right)}{2} \times \frac{1 + \sigma_E}{4} + \frac{1 - \sigma_B\left(+\vec{m}_E\right)}{2} \times \frac{1 + \sigma_E}{4} + \frac{1 - \sigma_B\left(-\vec{m}_E\right)}{2} \times \frac{1 - \sigma_E}{4}$
$=$ $\frac{1}{2} - \frac{\sigma_B\left(+\vec{m}_E\right) \sigma_E}{4} + \frac{\sigma_B\left(-\vec{m}_E\right) \sigma_E}{4}$ $=$ $\frac{1}{2} + \frac{ \left(1-2p\left(\vec{m}_E\right)\right) \vec{m}_A\cdot\vec{s}\left(\vec{m}_E\right) \times \vec{m}_A \cdot ir^B_{\vec{y},0}\left(\vec{m}_E\right)}{4} - \frac{ \left(1-2p\left(-\vec{m}_E\right)\right) \vec{m}_A\cdot\vec{s}\left(-\vec{m}_E\right) \times \vec{m}_A \cdot ir^B_{\vec{y},0}\left(-\vec{m}_E\right)}{4}$.
Proof (3/3)
The choice of $\left(\vec{m}_A\right)$ is fully random with $\vec{m}_A \in \left\{\vec{x}, \vec{y}\right\}$, thus the probability detection is $p_{detect} = \frac{1}{2} p_{detect}\left(\vec{x}\right) + \frac{1}{2} p_{detect}\left(\vec{y}\right)$.
We thus have $p_{detect} = \frac{1}{2} + \frac{f\left(p\left(\vec{m}_E\right),\vec{s}\left(\vec{m}_E\right),ir^B_{\vec{y},0} \left(\vec{m}_E\right)\right)}{8} - \frac{f\left(p\left(-\vec{m}_E\right),\vec{s}\left(-\vec{m}_E\right),ir^B_{\vec{y},0} \left(-\vec{m}_E\right)\right)}{8}$,
where $f\left(p,\vec{s},\vec{r}\right) = \left(1-2p\right)\left( \vec{z} \cdot \vec{s} \times \vec{z} \cdot \vec{r} + \vec{x} \cdot \vec{s} \times \vec{x} \cdot \vec{r} \right) = \left(1-2p\right)\left( \cos\theta_s \cos\theta_r + \cos\varphi_s \sin\theta_s \cos\varphi_r \sin\theta_r \right)$.
We have $f\left(p,\vec{s},\vec{r}\right) \in \left[-1,+1\right]$ because $1-2p \in \left[-1,+1\right]$ since $p \in \left[0,+1\right]$,
and $\left| \cos\theta_s \cos\theta_r + \cos\varphi_s \sin\theta_s \cos\varphi_r \sin\theta_r \right| \leq \max \left\{ \left| \cos\left( \theta_s - \theta_r \right) \right|, \left| \cos\left( \theta_s + \theta_r \right) \right| \right\} \leq 1$.
Thus $p_{detect} \geq \frac{1}{4}$.
For $\vec{m}_E = \vec{x}$, $p\left(\pm\vec{m}_E\right)=1$ and $s\left(\pm\vec{m}_E\right)=\pm\vec{m}_E=\pm\vec{x}$, we have $ir^B_{\vec{z},0} \left(\pm\vec{m}_E\right) = \pm\vec{x}$, which implies that $p_{detect} = \frac{1}{4}$. The probability value is the same with $\vec{m}_E = \vec{y}$.
The quantum channel can be realized using Alain Aspect's experimental set up $[$AGR1982,ADR1982$]$:
The classical channel could be any classical network (e.g., classical Internet communication).
Protocol described in $[$E91$]$.
Bell's inequalities
Usage of Bell's inequalities in E91 protocol
The Bell's inequalities that are used in the E91 protocol $[$E91$]$ and in Alain Aspect's experiments $[$AGR1982,ADR1982$]$ are a generalization $[$CHSH1969$]$ of the initial Bell's inequalities $[$Bell1964$]$.
We consider the Bell pair $BP_{\vec{z},0} \sim xy$-plane (linear-polarization plane) reflection $ir^A_{\vec{z},0} = ref_{xy} \sim \left|\Psi^+\right\rangle = \frac{1}{\sqrt{2}}\left( \left|0\right\rangle \otimes \left|1\right\rangle + \left|1\right\rangle \otimes \left|0\right\rangle \right)$.
Alice and Bob choose the measurement axes $\vec{m}_A$ and $\vec{m}_B$ in $xy$ plane (linear pôlarization). The measured qubits are $b_A$ and $b_B$ in $\left\{0,1\right\}$. For the inequalities, we transforme them into $\left\{+1,-1\right\}$ with $b'_A = 1-2b_A = (-1)^{b_A}$ and $b'_B = 1-2b_B = (-1)^{b_B}$.
Quantum physics rules
The expectation value of the product is $\mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_A, \vec{m}_B \right] = \sum_{\left(b'_A , b'_B\right) \in \left\{+1,-1\right\}^2}\mathrm{\textbf{P}}\left[b'_A , b'_B | \vec{m}_A, \vec{m}_B \right] \left(-1\right)^{b_A+b_B}$. With $\mathrm{\textbf{P}}\left[\pm 1, \pm 1| \vec{m}_A, \vec{m}_B \right] = \frac{1+\left(\pm \vec{m}_A\right)\cdot\left(\pm \vec{m}_A\right)}{2}$, we get $\mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_A, \vec{m}_B \right] = \vec{m}_A \cdot \vec{m}_B$.
We consider the case where $\vec{m}_A \in \left\{\vec{m}_{A,0},\vec{m}_{A,1}\right\}$ and $\vec{m}_B \in \left\{\vec{m}_{B,0},\vec{m}_{B,1}\right\}$, and the quantity $S = \mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_{A,0}, \vec{m}_{B,0} \right] - \mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_{A,0}, \vec{m}_{B,1} \right] + \mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_{A,1}, \vec{m}_{B,0} \right] + \mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_{A,1}, \vec{m}_{B,1} \right]$.
The calculation according to quantum physics gives $S = \vec{m}_{A,0} \cdot \vec{m}_{B,0} - \vec{m}_{A,0} \cdot \vec{m}_{B,1} + \vec{m}_{A,1} \cdot \vec{m}_{B,0} + \vec{m}_{A,1} \cdot \vec{m}_{B,1} = \vec{m}_{A,0} \left(\cdot \vec{m}_{B,0} - \cdot \vec{m}_{B,1}\right) + \vec{m}_{A,1} \cdot \left(\vec{m}_{B,0} + \vec{m}_{B,1}\right)$.
Now we consider the specific case where $\vec{m}_A \in \left\{\vec{x},\vec{y}\right\}$ ($0$° and $90$° angles in plane $xy$) and $\vec{m}_B \in \left\{\frac{\vec{y}+\vec{x}}{\sqrt{2}}, \frac{\vec{y}-\vec{x}}{\sqrt{2}}\right\}$ ($45$° and $135$° angles in plane $xy$), This gives $S = \vec{x}\cdot\sqrt{2}\vec{x} + \vec{y}\cdot\sqrt{2}\vec{y} = 2\sqrt{2}$.
Local hidden variables ?
Hypotheses:
Then $\left|S\right| = \left|\mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_{A,0}, \vec{m}_{B,0} \right] - \mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_{A,0}, \vec{m}_{B,1} \right] + \mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_{A,1}, \vec{m}_{B,0} \right] + \mathrm{\textbf{E}}\left[b'_A \cdot b'_B | \vec{m}_{A,1}, \vec{m}_{B,1} \right] \right|$ $\leq \max\left\{\left|a'_0 \cdot b'_0 - a'_0 \cdot b'_1 + a'_1 \cdot b'_0 + a'_1 \cdot b'_1\right|\right\}$.
Looking at all the 16 possibilities for $\left(a'_0,a'_1,b'_0,b'_1\right) \in \left\{+1,-1\right\}^4$, one can show that $\left|a'_0 \cdot b'_0 - a'_0 \cdot b'_1 + a'_1 \cdot b'_0 + a'_1 \cdot b'_1\right|=2$, thus $\left|S\right| \leq 2$ (Bell's inequality).
Bell's inequality violation: $S = 2\sqrt{2} > 2$ can be reached with quantum physics, for example when $\vec{m}_A \in \left\{\vec{x},\vec{y}\right\}$ ($0$° and $90$° angles in plane $xy$) and $\vec{m}_B \in \left\{\frac{\vec{y}+\vec{x}}{\sqrt{2}}, \frac{\vec{y}-\vec{x}}{\sqrt{2}}\right\}$ ($45$° and $135$° angles in plane $xy$).
$(1935)$ Einstein, Podolsky an Rosen paradox $[$EPR1935$]$: If one supposes (1) realism, (2) locality, and (3) quantum mechanics completeness, then there is a contradiction. At least one of the hypotheses is wrong. Einstein and his co-authors thought that (3) was wrong.
$(1964-1969)$ Bell's inequalities $[$Bell1964, CHSH1969$]$: It is possible to check by an experiment if (1 and 2) or (3) is wrong.
$(1982)$ Alain Aspect's experiments $[$ADB1982$]$: The Bell's inequalities are violated by the quantum mechanics, (3) is right, (1) or (2) is wrong.
Many people think that (1) is right (realism) and thus (2) is wrong (locality): non-localilty hypothesis. But Einstein's special relativity has always been proven to be right and quantum mechanics do not allow usable information transfer faster than light.
Relational interpretation of quantum mechanism $[$Rov1996, Rov2021$]$: (1) is wrong (no-absolute-realism but relationalism/relativity) and (2) is right (locality of interactions).
Choice of the Bell pair $BP_{\vec{z},0} \sim xy$-plane (linear-polarization plane) reflection $ir^A_{\vec{z},0} = ref_{xy} \sim \left|\Psi^+\right\rangle = \frac{1}{\sqrt{2}}\left( \left|0\right\rangle \otimes \left|1\right\rangle + \left|1\right\rangle \otimes \left|0\right\rangle \right)$.
Alice has 3 random choices of axis $\vec{m}_A \in \left\{\vec{x}, \frac{\vec{y}+\vec{x}}{\sqrt{2}}, \vec{y}\right\}$ ($0$°, $45$° and $90$° angles in plane $xy$) and Bob has 3 random choices of axis $\vec{m}_B \in \left\{\frac{\vec{y}+\vec{x}}{\sqrt{2}}, \vec{y}, \frac{\vec{y}-\vec{x}}{\sqrt{2}}\right\}$ ($45$°, $90$° and $135$° angles in plane $xy$). There are 9 possibilities for $\left(\vec{m}_A,\vec{m}_B\right)$ with probabilit $1/9$ each.
The following cases may happen:
$(1)$ With probability $2/9$, the measurement axes are equal and the measruements will be used by Alice and Bob to build the shared random secret key: $\left(\frac{\vec{y}+\vec{x}}{\sqrt{2}},\frac{\vec{y}+\vec{x}}{\sqrt{2}}\right)$ and $\left(\vec{y},\vec{y}\right)$;
$(2)$ With probability $4/9$, the measurements will be used for the Bell's inequality test, with the measurement axes: $\left(\vec{x},\frac{\vec{y}+\vec{x}}{\sqrt{2}}\right)$, $\left(\vec{x},\frac{\vec{y}-\vec{x}}{\sqrt{2}}\right)$, $\left(\vec{y},\frac{\vec{y}+\vec{x}}{\sqrt{2}}\right)$ and $\left(\vec{y},\frac{\vec{y}-\vec{x}}{\sqrt{2}}\right)$;
$(3)$ With probability $4/9$, the measurements will not be used with the measurement axes: $\left(\vec{x},\frac{\vec{y}+\vec{x}}{\sqrt{2}}\right)$, $\left(\frac{\vec{y}+\vec{x}}{\sqrt{2}},\vec{y}\right)$ and $\left(\frac{\vec{y}+\vec{x}}{\sqrt{2}},\frac{\vec{y}-\vec{x}}{\sqrt{2}}\right)$.
Without eavesdopping by Eve, Alice and Bob will get $S = 2\sqrt{2}$.
With total eavesdopping by Eve, Alice and Bob will get $\left|S\right| \leq \sqrt{2}$ $[$E91$]$.
Thus, the proportion $\rho$ of qubits that are eavesdropped by Eve can be upper-bounded according to what Alice and Bob measure for $S$: $\rho \leq 2\left(1-\frac{S}{2\sqrt{2}}\right)$, because $S \leq \left(1-\rho\right)\times 2\sqrt{2} + \rho \times \sqrt{2}$.
Some experimental QKD systems
Some commercial QKD products
QKD Standardization
Future of QKD: Quantum Internet
First QKD experiment in 1989, over $0.3$ m only $[$BB89$]$: 64516 light pulses with on average 0.34 photon per pulse $\rightarrow$ with 9% efficiency reception, about 2000 received pairs of qubits $\rightarrow$ with 50% worng choice of basies, about 1000 usable pairs of qubits $\rightarrow$ with distillation and equality confirmation protocols to remove errors, 443 then 403 perfectly shared qubits (i.e., with error $< 10^{-12}$) $\rightarrow$ with privacy amplification protocol, 175-bit final secret quantum key, with Eve knowing less than $5 \cdot 10^{-9}$ bits of information (!).
Fiber QKD record in 2015: Korzh, B., Lim, C., Houlmann, R. et al., "Provably secure and practical quantum key distribution over 307 km of optical fibre," Nature Photon 9, 163–168 (2015), https://doi.org/10.1038/nphoton.2014.327. About 3 bit/s with 51.8 dB loss (307 km fiber) for 660000-bit key (~3 days). The rate increases to ~900 bit/s for 200 km, and ~10000 bit/s for 100 km.
QKD by satellite in 2017: Liao, SK., Cai, WQ., Liu, WY. et al., "Satellite-to-ground quantum key distribution," Nature Vol. 549, pp. 43–47, 2017, https://doi.org/10.1038/nature23655. They achieved 1000 kbit/s key distribution over 1200 km, with Bell pair creation in the satellite.
Use of more complex realizations of QKD, e.g., Continuous-Variable QKD: For example (CiViQ project), F. Roumestan, A. Ghazisaeidi, J. Renaudier, L. T. Vidarte, E. Diamanti and P. Grangier, "High-Rate Continuous Variable Quantum Key Distribution Based on Probabilistically Shaped 64 and 256-QAM," 2021 European Conference on Optical Communication (ECOC), 2021, pp. 1-4, https://doi.org/10.1109/ECOC52684.2021.9606013. About 67 Mb/s secret key rates on average over a 9.5 km SMF link.
A good example is ID Quantique: https://www.idquantique.com/:
$\bullet$ Today's QKD systems are limited in distances because of the no-cloning theorem:
$\bullet$ To increase the distance, one can use of quantum buffers and quantum teleportation (not yet mature technologies).
$\bullet$ Then one can use optical switching to perform quantum routing (mature technology at least for optical circuit switching).
$\Rightarrow$ Quantum Internet to extend QKD between any pair of end points.
Questions?